Neutrino Event Rate Comparison for

Continuous Versus Discrete Decay Pipe Shielding

Abstract

The proposed discrete shielding configuration of the NuMI decay pipe produces a ν_{μ}^{CC} event rate that is 95% as large as the previous continuous shielding configuration. The wrong flavor neutrino rates are modestly smaller in the discrete shielding case.

1 Geometries

Two decay pipe geometries have been modeled using the GNUMI Monte Carlo.

- The "continuous" shielding case has a 1 m O.D. (0.98 m I.D.) decay pipe, which extends from 48 m after the end of the target to 793 m after the end of the target. In the GNUMI model used, the decay pipe is surrounded by continuous concrete shielding, as shown in Figure 1.
- The geometry for the "discrete" shielding is as discribed in "Status Update: Discrete Shield for NuMI Decay Pipe", S. Childress and G. Koizumi, 9/12/97, with two exceptions. The decay pipe end is taken at 793 m instead of 800 m for fair comparison to the continuous case. And the outermost radius of the concrete shielding is taken as constant, since it's exact shape is still under discussion it is irrelevant for the neutrino rates in any case. Figure 2 shows the GEANT model of the discrete geometry.

Figure 1: The continuous shield configuration.

Figure 2: The discrete shield configuration.

2 Neutrino Spectra

The resulting ν_{μ} neutrino event spectra at the MINOS detector in SOUDAN are compared in Figure 3. The smaller effective radius of the discrete shielding results in a somewhat smaller event rate. Figure 4 displays the spectra for the background neutrino flavors as well. The total event rates are listed in Table 1. A "year" corresponds to the NuMI-standard of $3.7x10^{20}$ protons delivered on target. The results are from 2.4 million GNUMI events (protons on target) for each geometry, using the FLUKA/GEANT generator model in GEANT v3.21.08.

CC event rates per kilo-ton per year	Continuous Shielding	Discrete Shielding
$ u_{\mu}^{CC}$	3857 ± 18	3674 ± 18
$\overline{ u}_{\mu}^{CC}$	33.0 ± 1.5	28.5 ± 1.4
$ u_e^{CC} $	19.7 ± 1.3	17.6 ± 1.0
$\overline{ u}_e^{CC}$	0.53 ± 0.05	0.48 ± 0.07

Table 1: Event rate comparison.

3 Secondary Interactions

Tables 2 and 3 break down the sources of neutrinos. The main division is by whether the parent of the neutrino was produced in the target or in one of the other regions listed (i.e. a secondary interaction process). The secondaries from scraping in the decay pipe region are modestly reduced in the discrete shielding configuration.

Figure 3: $\nu_m u^{CC}$ neutrino event spectra in MINOS. The data points are for the discrete shielding case, the dashed histogram for the continuous shielding case.

Figure 4: Neutrino event spectra in MINOS for different neutrino species. The data points are for the discrete shielding case, the dashed histogram for the continuous shielding case.

$\overline{ u_{\mu}^{CC}events}$	Continuous	Discrete
per kilo-ton per year	Shielding	Shielding
From Target		
π	$3546. \pm 18.$	$3388. \pm 17.$
$K^{\pm}2 - body$	177.8 ± 2.2	164.7 ± 2.1
$K^{\pm}3 - body$	4.31 ± 0.23	4.61 ± 0.27
K_L^0	0.69 ± 0.11	0.44 ± 0.07
Secondary		
$\mu \operatorname{decay}$	0.021 ± 0.009	0.0018 ± 0.0010
K_S^0 etc.	42.0 ± 1.3	38.3 ± 1.3
Horns	83.1 ± 2.1	77.9 ± 2.5
Concrete	0.00049 ± 0.00007	0.000067 ± 0.000024
Target Hall FE	0.364 ± 0.039	0.30 ± 0.05
Decay Pipe Window	0.75 ± 0.24	0.34 ± 0.12
Decay Region Iron	4.57 ± 0.27	0.62 ± 0.11
Hadron Absorber	0.048 ± 0.011	0.022 ± 0.005
$\overline{\overline{ u}_{\mu}^{CC}}events$	Continuous	Discrete
$\overline{\overline{\nu}_{\mu}^{CC}} events$ per kilo-ton per year	Continuous Shielding	Discrete Shielding
r:		
$\frac{\text{per kilo-ton per year}}{\text{From Target}}$		
per kilo-ton per year From Target π $K^{\pm} 2 - body$	Shielding	Shielding
per kilo-ton per year From Target π $K^{\pm}2 - body$ $K^{\pm}3 - body$	Shielding $ 21.4 \pm 1.4 $ $ 1.30 \pm 0.10 $ $ 0.047 \pm 0.014 $	Shielding
per kilo-ton per year From Target π $K^{\pm}2-body$ $K^{\pm}3-body$ K_L^0	Shielding 21.4 ± 1.4 1.30 ± 0.10	Shielding 20.1 ± 1.4 1.11 ± 0.08
per kilo-ton per year From Target π $K^{\pm}2 - body$ $K^{\pm}3 - body$	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057	Shielding $ 20.1 \pm 1.4 $ $ 1.11 \pm 0.08 $ $ 0.030 \pm 0.011 $ $ 0.24 \pm 0.05 $
per kilo-ton per year From Target π $K^{\pm}2-body$ $K^{\pm}3-body$ K_{L}^{0} Secondary μ decay	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35
$ ext{per kilo-ton per year}$ $ ext{} ext{$	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10	Shielding $ 20.1 \pm 1.4 $ $ 1.11 \pm 0.08 $ $ 0.030 \pm 0.011 $ $ 0.24 \pm 0.05 $
per kilo-ton per year From Target π $K^{\pm}2-body$ $K^{\pm}3-body$ K_{L}^{0} Secondary μ decay K_{S}^{0} etc. Horns	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10 2.81 ± 0.36	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35 0.73 ± 0.21 1.87 ± 0.23
per kilo-ton per year From Target π $K^{\pm}2 - body$ K_L^0 Secondary μ decay K_S^0 etc. Horns Concrete	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10 2.81 ± 0.36 0.00018 ± 0.00013	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35 0.73 ± 0.21 1.87 ± 0.23 0.000034 ± 0.000024
per kilo-ton per year From Target π $K^{\pm}2-body$ K_{L}^{0} Secondary μ decay K_{S}^{0} etc. Horns Concrete Target Hall FE	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10 2.81 ± 0.36 0.00018 ± 0.00013 0.079 ± 0.008	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35 0.73 ± 0.21 1.87 ± 0.23 0.000034 ± 0.000024 0.123 ± 0.027
per kilo-ton per year From Target π $K^{\pm}2-body$ $K^{\pm}3-body$ K_L^0 Secondary μ decay K_S^0 etc. Horns Concrete Target Hall FE Decay Pipe Window	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10 2.81 ± 0.36 0.00018 ± 0.00013 0.079 ± 0.008 0.21 ± 0.07	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35 0.73 ± 0.21 1.87 ± 0.23 0.000034 ± 0.000024 0.123 ± 0.027 0.21 ± 0.07
per kilo-ton per year From Target π $K^{\pm}2-body$ K_{L}^{0} Secondary μ decay K_{S}^{0} etc. Horns Concrete Target Hall FE	Shielding 21.4 ± 1.4 1.30 ± 0.10 0.047 ± 0.014 0.425 ± 0.057 4.83 ± 0.47 0.82 ± 0.10 2.81 ± 0.36 0.00018 ± 0.00013 0.079 ± 0.008	Shielding 20.1 ± 1.4 1.11 ± 0.08 0.030 ± 0.011 0.24 ± 0.05 3.94 ± 0.35 0.73 ± 0.21 1.87 ± 0.23 0.000034 ± 0.000024 0.123 ± 0.027

Table 2: Sources of ν_{μ}^{CC} and $\overline{\nu}_{\mu}^{CC}$ events in the MINOS detector.

\overline{CC}	a :	D:
$\overline{ u_e^{CC}events}$	Continuous	Discrete
per kilo-ton per year	Shielding	Shielding
From Target		
$K^{\pm}3 - body$	8.42 ± 0.40	8.35 ± 0.41
K_L^0	1.26 ± 0.13	0.93 ± 0.16
Secondary		
μ decay	9.7 ± 1.2	8.0 ± 0.9
K_S^0 etc.	0.0010 ± 0.0008	0.00042 ± 0.00031
Horns	0.227 ± 0.035	0.31 ± 0.08
Concrete	0.000100 ± 0.000036	0.0000013 ± 0.0000012
Target Hall FE	0.0073 ± 0.0017	0.0071 ± 0.0035
Decay Pipe Window	0.009 ± 0.005	0.0008 ± 0.0008
Decay Region Iron	0.083 ± 0.013	0.0085 ± 0.0038
Hadron Absorber	0.00052 ± 0.00019	0.00021 ± 0.00005
$\overline{\overline{ u}_e^{CC}} events$	Continuous	Discrete
$\overline{\nu_e^{CC}}events$ per kilo-ton per year	Continuous Shielding	Discrete Shielding
per kilo-ton per year From Target		
per kilo-ton per year		
per kilo-ton per year From Target	Shielding	Shielding
$\frac{\text{per kilo-ton per year}}{\text{From Target}}$ $K^{\pm}3 - body$	Shielding 0.041 ± 0.010	Shielding 0.049 ± 0.013
	Shielding 0.041 ± 0.010	Shielding 0.049 ± 0.013
	Shielding 0.041 ± 0.010 0.419 ± 0.046	Shielding 0.049 ± 0.013 0.39 ± 0.07
	Shielding 0.041 ± 0.010 0.419 ± 0.046 0.0074 ± 0.0031	Shielding 0.049 ± 0.013 0.39 ± 0.07 0.00045 ± 0.00027
	Shielding 0.041 ± 0.010 0.419 ± 0.046 0.0074 ± 0.0031 0.00023 ± 0.00015	Shielding 0.049 ± 0.013 0.39 ± 0.07 0.00045 ± 0.00027 0.0000017 ± 0.0000011
	Shielding 0.041 ± 0.010 0.419 ± 0.046 0.0074 ± 0.0031 0.00023 ± 0.00015 0.042 ± 0.009	Shielding 0.049 ± 0.013 0.39 ± 0.07 0.00045 ± 0.00027 0.0000017 ± 0.0000011 0.042 ± 0.016
per kilo-ton per year From Target $K^{\pm}3 - body$ K_L^0 Secondary μ decay K_S^0 etc. Horns Concrete Target Hall FE Decay Pipe Window	Shielding 0.041 ± 0.010 0.419 ± 0.046 0.0074 ± 0.0031 0.00023 ± 0.00015 0.042 ± 0.009 0.0000063 ± 0.0000027	Shielding 0.049 ± 0.013 0.39 ± 0.07 0.00045 ± 0.00027 0.0000017 ± 0.0000011 0.042 ± 0.016 0.0000021 ± 0.0000017
per kilo-ton per year From Target $K^{\pm}3 - body$ K_L^0 Secondary μ decay K_S^0 etc. Horns Concrete Target Hall FE	Shielding 0.041 ± 0.010 0.419 ± 0.046 0.0074 ± 0.0031 0.00023 ± 0.00015 0.042 ± 0.009 0.0000063 ± 0.0000027 0.0019 ± 0.0005	Shielding 0.049 ± 0.013 0.39 ± 0.07 0.00045 ± 0.00027 0.0000017 ± 0.0000011 0.042 ± 0.016 0.0000021 ± 0.0000017 0.00104 ± 0.00019

Table 3: Sources of ν_e^{CC} and $\overline{\nu}_e^{CC}$ events in the MINOS detector.

4 Conclusions

There is a fairly small (5%) decrease in the ν_{μ} charged current event rate in the case of the discrete shielding. The wrong flavor backgrounds are reduced by somewhat larger amounts, although this is only a couple standard deviation effect with current Monte Carlo Statistics.

In the neutrino energy region of a few GeV, the impact on the ν_{μ} charged current rate is larger. This points out that the smaller radius in the early part of the decay pipe is probably not ideal if NuMI/MINOS wants to shift to a lower energy neutrino beam at some point.